На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

I Z O M O R F

21 подписчик

ВСЕ СОСТОЯНИЯ МАТЕРИИ: СИММЕТРИЯ И ПОРЯДОК

Газ, жидкость, твердое тело? Это смешно: сегодня известно более 500 состояний вещества, которым недавно предложена классификация.

 

 

 

 

Одно из теоретически предсказанных состояний материи - «струнно-сетевая жидкость» (String-net liquid) - описывается топологическим порядком

 

Традиционно агрегатные состояния вещества рассматриваются в рамках их симметрии. Представьте, что мы уменьшились до размеров атомов и плывем в толще воды. Это состояние с высокой симметрией, и куда бы мы ни смотрели - вверх, вперед или влево - картина будет одна и та же. Но если вода замерзнет, то мы, двигаясь во льду, будем видеть определенные структуры: организованные в цепочки и плоские фигуры атомы. В разных направлениях мы увидим разное: лед - состояние с меньшей симметрией.
 
Такой взгляд на агрегатные состояния был предложен советским физиком Львом Ландау и стал мощным инструментом, позволяющим систематически подойти к поиску пока неизвестных возможных состояний вещества. Неудивительно, что долгие годы считалось, будто все они могут быть найдены с помощью концепции Ландау, а вне отношений симметрии агрегатных состояний не может существовать.
 
Со временем были обнаружены новые состояния - плазма, вырожденная материя, бозе-эйнштейновский конденсат и так далее. Однако в последние десятилетия открыты такие из них, которые в эту парадигму не укладываются. К примеру, в 1980-х Сяоган Вэнь (Xiao-Gang Wen) с коллегами обнаружили квантовые системы, способные существовать в разных состояниях с равной симметрией. Ученые показали, что эти состояния различаются не симметрией, а топологическим порядком.
 
Это квантовая характеристика, связанная не с симметрией состояния, а со свойствами его волновой функции. Она никак не связана с концепцией Ландау, построенной в рамках классической физики. Она подходит для описания квантовых состояний вещества и переходов между ними.
 
Она описывает не симметрию состояния, а возникающие при нем в системе сети квантово спутанных частиц (это уникальное явление микромира, позволяющее связать две или более частиц друг с другом, так что изменение свойств одной частицы моментально сказывается на свойствах всех остальных). Сети этих взаимодействий нельзя описать формулами симметрии - здесь понадобится топология.
 
Этот новый взгляд на возможные агрегатные состояния вещества оказался более универсален, чем классический, и позволил описать больше вариантов. Однако до сих пор оставались некоторые состояния, никак топологическими порядками не описанные. Эти редкие состояния могут очень понадобиться для сверхпроводников и изоляторов будущих квантовых компьютеров, и разобраться с ними стоило.
 
Работа эта заняла не один год - и лишь в конце 2012-го Вэнь и его команда предложили уточнение своей модели, которое охватило уже все состояния без исключений.
 
По пресс-релизу Perimeter Institute for Theoretical Physics

 

наверх